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Abstract

A phenomenological characterization of hysteresis in magnetostrictive materials is pre-

sented. Such hysteresis is due to both the driving magnetic fields and stress relations within

the nlaterial and is significant throughout most of the drive range of magnetostrictive trans-

ducers. An accurate characterizalion of the hysteresis and material nonlinearities is necessary

to fully utilize the actuator/sensor capabilities of the magnetostrictive materials. Such a

characterizatioll is made here in the context of generalized I)reisach operators. This yields

a framework amenable to proving the well-posedness of structural models that incorporate

the magnetostrictive transducers. It also provides a natural setting in which to develop prac-

tical approximation techniques. An examl)le illustrating this framework in the context of a

Timoshenko l)eam model is presented.

IThis research wa_ supl)orted in part by the National Aeronaulics and Space Administration under NASA
(k)ntract Number NAS1-19480 while the author was a visiting scientist at the Institute for Computer Applica-
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1 Introduction

Important members in the class of smart materials currently employed in control a.pplica:

tions are magnetostrictive materials. The phenomenon of magnetostriction is defined as the

strain which results when a magnetic material is subjected to a magnetic field. While this

phenomenon occurs in most ferromagnetic materials, only in recently developed rare-earth

materials are the strains and forces sufficiently large to facilitate their use in actuators and

sensors. This has led to the use of magnetostrictive materials as ultrasonic transducers, posi-

tioners, sonar projectors (500-2000 Hz) and isolators (5-60 Hz). They are also being cousidered

as actuators for controlling vibrations in thick structures and in heavy rotating components

such as milling machine bits (further details regarding applications in which magnetostrictive

transducers are employed as sensors and actuators can be found in [8, 16]).

_I5 fully utilize their capabilities as either sensors or actuators, the input and output

characteristics of magnetostrictive materials must be quantified in a maimer amenal)le to

i)arameler estimation and control applications. As detailed in the literature {e.g., see [17, 19])

and outlined in the next section, the input/output characteristics of magnetostrictive materials

are inherently nonlinear and disl)lay significant hysteresis. To utilize the transducer responses

in a range useful for full control applications, accurate ma.thematical characterization of the

nonlinearities and hysteresis is required.

The general techniques we use here to characterize the magnetic nonlinearities and hys-

teresis are based on Preisach-type operators. The use of Preisach techniques for characterizing

general magnetic hysteresis is well-established in the literature (see [1, 6, 13, 15, 23, 24, 26]

and references therein) and some aspects have been extended to magnetostrictives [2, 9]. In

[2], the classical Preisach model was modified for Terfenol-D materials by considering a char-

a cterization for the output strain in terms of two inputs and two Preisach kernels. This was

motivated by." the observation that magnetostrictive materials exhibit hysteresis with respect

to both magnetic field and stress. Further coupling between tile kernels and input was included

in the model proposed in [9].

In this work, we consider the modeling of nonlinearities and hysteresis in magnetostrictive

transducers in the context of the generalized Preisach or Krasnoselskii-Pokrovskii kernels

developed in [6]. Such generalizations of the classical Preisach theory are motivated by the

goal of attaining a kernel which is continuous with respect to both time and shape parameters

(as proven in [6], tile classical Preisach kernel is discontinuous in both aspects). This provides

a framework in which to prove well-posedness of models which incorporate magnetostrictive

transducers. Furthermore, it yields a framework which is natural for the development of

approximation techniques for both simulations and parameter estimation.

It should be noted that the modeling of nonlinearities and hysteresis through Preisach

techniques is phenomenological rather than physics-based. It provides a mathematical charac-

terization of the input/output relationships for magnetostrictive materials in lieu of a complete

theory for the electromagnetic and magnetomechanical properties of the materials. As the

physical theory is advanced, physics-based models may provide additional insights regarding

the actuator/sensor mechanisms and hence replace the Preisach models. For example, theory

based upon magnetic domain wall motion, which is used in [21, 22] to model hysteresis in fer-

romagnetic nmterials, may be applicable to maglmtostrictive materials. At. the current time,



however,severalphysical mechanismsin magnetostrictivematerials are still not well under-
stood, thus motivating the phenomenotogicalor empirical characterizationof the material.

The construction of magnetostrictive transducersand physical propertiesof the magne-
tostrictive materials are describedin Section 2. The sourceand form of the nonlinearities
and hysteresisaredetailed to illustrate issuesto be addressedin the models. The generalized
Preisachkernelsand operators developedin [6] are summarizedin Section 3. In Section4,
a thick cantilever beamwith magnetostrictiveactuators is usedas a prototype for structural
modelswhich incorporate magnetostrictive inputs. Modified Timoshenkoequationsare used
to model tile beam dynamics while generalizedPreisachor Krasnoselskii-Pokrovskiiopera-
tors are used to characterizethe inputs. Tlle well-posednessof the model and parameter
estimation problem is establishedusing tile frameworkof [4, 6]. Although the framework is
describedherein the context of a specific,simplestructure, it is sufficiently generalto include
structures comprisedof plates and shellsas well as structures in which nonlinear dynamics
aresignificant.

2 Magnetostrictive Transducers

To illustrate issues which must be addressed when modeling magnetostrictive materials, the

transducer depicted in Figure 1 is considered. This transducer is typical of those currently

employed in applications and contains the basic components required for experimental use as

a control actuator. Details regarding the construction and performance of this transducer can

be found in [17].

The primary components of the transducer consist of a magnetostrictive rod, a wound wire

solenoid, and a cylindrical permanent magnet. In current transducers, the magnetostrictive

material is typically composed of terbium and dysprosium alloyed with iron. A commonly

employed material is Terfenol-D (Ter: terbium, re: iron, nol: Naval Ordinance Laboratory, D:

dysprosium) which is constructed as a cylindrical rod and placed in the center of the trans-

ducer. The sensor/actuator capabilities of the material are due to the rotation of magnetic

moments within the rod in the presence of an applied magnetic field. In ferromagnetic ma-

terials such as Terfenol-D, moments are ordered and exhibit a high degree of alignment at

temperatures below the Curie point (regions in which moments are highly aligned are termed

domains). As depicted in Figure 2a, the moments within domains are primarily oriented per-

pendicular to the longitudinal rod in the absence of an applied field. Prestressing the rod with

the spring washer serves to increase the number of moments perpendicular to the axis (see

Figure 2b) and places the material in compression. This latter objective is necessary due to

the inherent brittleness of Terfenol-D. In the presence of a magnetic filed, the moments rotate

so as to align with the field. Consequently, if the field is applied in the direction of the rod

axis, the moments rotate in the sense depicted in Figure 2c and significant strains are gener-

ated. This is termed the Joule effect and provides the actuator capabilities of the transducer.

Sensing is accomplished through the measurement of the magnetic fields which result when

mechanical stresses cause rotations of the moments within domains (Villari effect). Details

regarding these effects can be found in [19, 25].

The strains generated through an applied field are always positive since rotation of the

moments from the prestressed perpendicular state leads to an increase in the rod length. As



SteelCasing CylindricalPermanentMagnet

WoundWireSolenoid

Figure 1. Crosssectionof a t.ypical Terfenol-D magnetostrictive transducer.

indicated in Figure 3, the relationship between the applied magnetic flux or induction B and

strain _ is also highly, nonlinear with saturation occurring at large field strengths. Moreover,

slight hysteresis also exists between /3 and e at high drive levels (this is not depicted in the

figure).

The generation of bidirectiona.1 strains is accomplished through either a DC current 1o

applied to the solenoid which surrounds the rod, or an enclosing cylindrical permanent magnet

which provides a biasing magnetic induction /3o. A time varying current I(t) is then used to

vary the induction in the rod between 0 and B,,,. This provides the capability of generating

both positive and negative strains.

AX 1

(a) (b)

(c)

I I

_x 2

Figure 2. Magnetic domains in the Terfenol-D rod; (a) Orientation of moments within

domains in unstressed rod with no applied field; (b) Orientation of moments in prestressed

rod with no a,pI)lied field; (c) Orientation of nloments in prestressed rod when field is applie(I

in direction of longitudinal rod axis.
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Figure 3. Strain distribution (: generated by an applied magnetic induction B.

To model the transducer for actuator and sensor purposes, it is necessary to characterize

the relationship between the current I applied to the solenoid, the resulting magnetic field H,

the associated inagnetic induction B and finally, the generated strains c. Furthermore, the

quantification must incorporate the contributions due to the permanent magnet.

As detailed in [19], the magnetic induction and field are related by the permeability p
which is defined as

B

The magnetic field is due both to the solenoid and the permanent magnet. The magnetic

induction from the permanent magnet is approximated by B0 = llHo while Amp_re's law

yields B = #TH, where n is the number of turns pet" unit length in the solenoid, as the

approximate magnetic induction due to the solenoid (these are approximate since edge effects,

air gaps, etc., are neglected).

For Terfenol-D, the permeability It is highly nonlinear and exhibits significant hysteresis

as indicated by the induction/field relations depicted in Figure 4a. As discussed in [2], this

hysteresis is manifested with respect to both the applied magnetic field and stresses within

the magnetostrictive material. To indicate tile latter contribution, the permeability in mag-

netostrictive applications is often denoted by _. The hysteretic relationship between the

magnetic field, magnetic induction and material stress are then inherently manifested in the

field-strain relations as shown in Figure 4b.

As indicated by the preceding discussion, the nonlinear relationships between the applied

current and magnetic induction are augmented by nonlinearities in the behavior of the magne-

tostrictive materials. For example, experimental results in [11, 14] indicate that the '_%ung's

modulus E/4 for Terfenol is dependent upon the applied magnetic field which partially accounts

for tile dependence of magnetic hysteresis on the material stress. Furthermore, experimen-

tal results in [11, 14] demonstrate that other material properties such as magnetomechanical

coupling coefficients are highly sensitive to operating conditions such as prestress level, AC

drive levels, operating frequencies and temperature. To provide a framework amenable to

characterization of these relationships, we summarize next necessary theory regarding gener-

alized Preisach operators. The application of this theory to magnetostrictive materials in a

structural setting is considered in the final section.
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Figure 4. (a) Relationship between the magnetic field strength H and the magnetic flux

density B: (b) Applied magnetic field H and resulting strain distribution e.

3 Preisach and Krasnoselskii-Pokrovskii Operators

In this section, we provide basic theory regarding Preisach-type operators in a Hilbert space

setting. Classical Preisach kernels and operators are defined first and are then extended to

kernels of t(rasnoselskii-Pokrovskii type to attain desired continuity properties. The material

in this section summarizes theory fi'om [6, 7], and tile reader is referred to those references for
further details.

To motivate the general kernels used later, we first, illustrate with a single delayed, relay

operator ]_'. This kernel is characterized in terms of crossing times r(t) defined by

r(t) = {,/C (0, T] [u(,l)= al oi" u(Tl)= s2}

where ._ = (-'_1 , $2) are points in the Preisach half plane

and u denotes an input function. The values sl,s2 are threshold values for the nmltivalued

kernel a.s reflected in the definition

{ [k_(u,f)](0) if r(t)=¢
[k_(u,_)](/) = -1 if r(t) # 0 and u(maxr(t)) = s 1

+1 if r(t)#Oandu(maxr(t))=s2.

A depiction of this kernel is given in Figure 5. The starting value

-1 if 't/,(0) "_ s1

[/_',(u,_)](0) = _ if ,_ < u(0) < ,_2

+1 if u(0) _> ._2

defines the initial state of the kernel in terms of the parameter ( C {-1, 1}.



Theoutput remainsonabranchuntil a thresholdis reachedin the monotonicallyincreasing
input u. At that point, the output jumps to the other saturation value and remains there

until the other threshold value is reached. For example, an output response starting with a

value of -1 will retain that value until u(t) reaches s2. The output then jumps to +1 until

the threshold value of 31 is reached.

The classical Preisach operators are then defined in terms of parallel collections of these

single relay operators. To this end, we let M denote the set of all finite, signed Borel measures

on $ and let, f be a Borel measurable function mapping S --_ {-1,1}. For u ¢ C[O,T] and

l_ ¢ _9t, the Preisach operator is defined by

[P,(u,.f)](t) =

The goal ill the parameter identification problem is to estimate the measure v so that the

model response "fits" experimental data in a least squares sense.

While this provides an operator which is useful for many applications, this classical defi-

nition does not yield a kernel, and hence operator, which is continuous with respect to either

time or parameters. Specifically, as proven in [6], the mapl)ing in time

and the parameter space mapping

are discontinuous for the classical Preisach kernel k_(u, _). Continuity in time is important

from a physical perspective while continuous parameter dependence is crucial for the devel-

opment of practical parameter estimation methods.

Sl

/k

ks(u)

S2

+1

D.

U

-1

Figure 5. Single Preisach relay operator with threshold values ";1, "S2"
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To avoid the difficulties associatedwith the discontinuous mappings, a Krasnoselskii-
Pokrovskii kernel of the tyi)e discussedin [6] is employed. This kernel is somewhat less
generalthan the influenceoperatorsconsideredin [23]and arisesasanextensionof smoothed
Preisachoperators. Theseoperators differ from the previously-definedPreisachoperator in
the manner through which anenvelopeof admissiblepaths is defined. In this case,anenvelope
is provided by translates

*'_1= r(x - .sl)

of a Lipschitz continuous ridge function r(ar) as depicted in Figure 6. For monotone inputs

'u,,_ E C[0, T], a monotone output operator is defined by

{ max{_, r(u,_(l) - .s,2)} if u._ is non-decreasing[TC(u,_, {)](t) = min{_, 'r(u,,_(/) - s_ )} if Um is non-increasing.

In terms of this operator, a kernel is defined for piecewise monotone inputs up,,, C C[0, T] A

,q',.j[0, T], where 5,,j[0, T] is the set of piecewise linear splines with j knots in [0, 7'], in the

following manner. The initial value of the operator is taken to be 7_0 = (. A kernel/,'_ is then

defined recursively on each subinterval by

[]_'s(ltpm,_)](t) = [Y_(I/,p,n,'_k_l)](_) , _ E [_k_l,_k] (3.1)

where 7¢k = Tg(up_, T¢_,_l )(It.), k = 1,... ,j. The input and action of this kernel are illustrated

in Figure 7. This provides a definition of the kernel useful for computational algorithms in

which inputs are discretized in terms of a piecewise linear basis. This definition is readily

extended to arbitrary 'u E C[0, T] through standard density, arguments as detailed in [2:3].

It is natural in the applications considered here to formulate the hysteretic input operator

in a manner commensurate with a weak model formulation. We thus consider a space of test

functions 1: and state space H in which V is continuously and densely embedded in H and

forms a Gelfand triple

I,_-_ H __H* _+ V*.

/

" r(/

J

-| Sl

" -s2)

S2

+1

x"

Figure 6. Hysteresis envelope provided by the translates 7"1 and r2 of the ridge flmction r(a,).
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Figure 7. (a) Piecewise monotone input; (b) Outl)ut from the Krasnoselskii-Pokrovskii kernel

in response to a piecewise monotone input.

The following theorem from [6] summarizes the continuity properties of the kernel k, and

quantifies the resulting input operator B,.

Theorem 1. Let ks denote tile kernel defined in (3.1) and let S denote the closure ors in IR2.

(1) For each s (5 $ and { (5 {-l,1}, the kernel satisfies k,(-,(): C[0, T] + C[0, T].

(2) For each u (5 C[0, T],( • {-1,1} and t • C[0, r], the map .4 _ [k,(u,{)](t)is continuous

from ,5" to IR.

(3) For g • V* and u (5 ,'_4, the control influence operator B, defined by

[B,(u,()](t) - g[P_,(u,_)](t) = g £ [k_(u,()](t)du(s) (3.2)

satisfies B_,(u,() • L2((0, T); I_').

Remark 1. The kernel k, and control influence operator B, defined in this manner can be

readily incorporated in a framework for proving model well-posedness and the existence of

a measure which minimizes an appropriate parameter estimation fimctional. Moreover, as

illustrated in Figure 7, this kernel yields a technique for characterizing the nested hysteresis

curves which are common in magnetostrictive applications.

4 Characterization of Hysteresis for Structural Models

with Magnetostrictive Transducers

To illustrate the use of the operator framework described in the last section to characterize

hysteresis in magnetostrictive materials, we consider tile n]o(leling of magnetostrictive trans-

ducers mounted to a thick cantilever beam as depicted in Figure 8. The transducers are

considered to be mounted to the clamps at the fixed edge of the beam so that mass load-

ing from the actuators themselves is minimized. A rigid bar is used connect the end of the



if:ilL,if!_'

?i!!!_::i
iii_iiiiii!iil

Figure 8. (',antilever beam with magnetostrictive actuators.

Terfenol-D rod in tile transducer to the beam. By driving tile transducers out-of-phase, bend-

ing moments are generated in a manner which can be used to attenuate beam vibrations. As

described in [12], this experimental setup has been used in initial experiments to determine

tile potential of magnetostrictive transducers as structural actua.tors. Due to limitations in

models and control laws, driving currents in the experiments were restricted to a range in

which linearized results could be employed. Even in this restricted regime, the results of [12]

demonstrate the utility of the magnetostrictive transducers for structural applications.

It should be noted that a beam is considered here both due to its previous experimental use

and the relative simplicity of the resulting model. The operator techniques are ctuite general,

however, and can be applied in a similar nlanner to structures comprised of plates or shells as

well as structures undergoing large deformations which leads to nonlinear models (e.g., yon

I(_irmaln models).

For modeling purposes, we take the beam to have length t, width b and thickness k. The

density, Young's nlodulus, l_elvin-Voigl damping coefficient and air damping coefficient for tile

beam arc" denoted by pt,, E_,, CDb and _, respectively. The cross-sectional area of tile Terfenol

rod is denoted 1)5; A,,_,,j while the Young's modulus and damping coefficient for the Terfenol

rod arc" denoted by E H .tt The length and width of the connecting bar are denoted by G

and b,., respectively, while tile bar density is given by p,..

4.1 Strong Form of Beam Model

The Timoshenko equations

(t,x) = ](t,x)

02 o OM O Mmag
pr(x)-_fi-(t,x) - -d_z (t,x) + Q(t,x ) - _ (t,x)

0<x<t, t>0

(4.1)

w(t,0)=o(t,0)=0 / , t>0
M(t, () = Q(t, t) = o J

where w and o denote the transverse displacement and cross-sectional rotation, respectively,

are used to model the beam dynamics. Exogenous surface forces to the beam are denoted by



f(t, x) while p(x) is the composite density of the structure. The cross-sectional area of the

beam is given by A(x), while r(x) - l(x)/A(x) where l(x) is the moment of inertia of the cross-

sectional area. Note that these quantities are spatially variable due to the nonhomogeneity

in the region of the connection rod. Finally, the internal bending moment and shear force are

given by M(t,x) and Q(t,x), respectively, while the external bending moment generated by

the magnetostrictive actuators is denoted by Mmag(t, x).

To determine appropriate functional forms for the density, internal moment and shear force,

the structural contributions due to the connecting bar and Terfenol rod must be quantified.

We assume here that the connecting bars are perfectly rigid and contribute mass to the beam

but do not affect the bending moments (we neglect air resistance to the bars). The actuator

and Terfenol rod are considered to be supported from the boundary clamps so they do not

contribute mass to the beam. The Terfenol rod is assumed to contribute an elastic stress

which is umform across the cross-sectional area of the rod.

Under the assumption of uniform cross-sectional strains in the magnetostrictive rods, the

density, stiffness and Kelvin-Voigt damping parameters for the structure are then taken to be

p(x) = pbhb+ 2prbrGxrod(x)

Ebh3b
El(x) - 12 + 2A._agE H (h/2 + G) 2 \rod(x) (4.2)

CDI(x)- cDbh3b
12

9 H
+ -AmagCD (hi2 -4- (,.)2 _,.od(X)

where the location of the rods is delineated by the characteristic function \_od which has a

value of 1 in the region covered by the connection bar and is 0 elsewhere. The internal moment

and shear are then given by

i(t,x) = E1(x) (t,x) +

0'3

Q(t, x) = ,_AG(.r)/3(t, .r) + _AcQ(x)-:_-[(t, x)

(4.3)

where g is a correction factor which accounts for the fact that the outer surface of the beam

cannot support a shear stress, G(x) is the shear modulus and CQ(X) represents resistance to

the shear strain rate. Finally, the shear deformations are defined t)y

OW.

/3(t,x) = (t,:r) + o(t,x).
(.Ix

It should be noted that the contributions due to the connection rods are dependent upon

the exact experimental setup and different assumptions and models can also be used to in-

corporate the passive rod contributions. In all cases, the piecewise constant parameters

p(x), r(x), El(x), G(x), cDl(x), CQ(£) and constant l)arameter ") must be estimated through

a least squares fit to experimental data. to attain a reasonable model for the specific experi-

mental device (The values determined by (4.2) cannot be used with certainty when modeling

the experimental apparatus due to inaccuracies in manufacturer specifications, etc.; however,

l0



they canbeusedasinitial valuesfor the optimization routine.) Note that in the momentand
shearexpressions(4.3) and equations(4.1), parametershave beencombinedto yield a single
valueto be estimated.

To characterizethe external momentgeneratedby the magnetostrictive transducers,we
will assumethat an offset DC current I0 is used to provide the magnetic field bias necessary

to attain bidirectional strains. Amp/ere's law then yields tile magnetic induction

13(t) = yn[I(t) + I0] (4.4)

where again, n is the number of terms per unit length in the solenoid, l(t) is the current

applied to the solenoid, and tt _ is the permeability. As noted in Section 2, the permeability

exhibits both stress-dependent nonlinearities and hysteresis due to the magnetic field.

The strain can be related to the magnetic induction through the nonlinear equation

=

where ,kTB depends upon the magnetic induction B. Moreover, the external stress-strain

relation

= Erie(t) (4.6)

is also nonlinear since l,he goung's modulus Ett for the Terfenol-D rod can be highly dependent

upon the applied magnetic field. Finally, the external moment generated by the Terfenol-D

rod is

M ...... = + (4.7)

where t,. denotes the length of the connection bar and Am=u is the cross-sectional area of the
Terfenol rod.

C,ombination of (4.7) with (4.4)-(4.6) will yield a relationship for the external moment in

terms of the applied current I(t). ttowever, this relationship is not directly usefill for modeling

transducer dynamics since the paranleters tt:',K_B and E H are highly nonlinear and exhibit

significant hysteresis.

An alternative is to characterize the external moment through the fitting of hysteresis and

material nonlinearities in terms of the Preisach kernels described in Section 3. Specifically,

the exlernal moment generated by the magnetostrictive transducer can be described by the
relation

Mm,,ft, at)= 2A,,,,g(G + h/2)[P,(I,()](t)X_o_(X) (4.8)

where
/,

[P,,(I,{)](t) - Js[k,(I,{)](t)du(s). (4.9)

The kernel /,'_ is the extension of that defined in (3.1) to I C C[0, T]. In essence, the method

characterizes the hysteresis and material nonlinearities through curve fitting in terms of a

measure u which, for a given set of experimental operating conditions, is estimated through

a least squares fit to data. Due to its generality, the technique can be used to characterize

a wide variety of transducer responses. Furthermore, the technique provides a framework

suitable for parameter estimation and subsequent controller design.

1t



4.2 Weak Form of Beam Model

As noted when (4.3) and (4.8) are employed in (4.1), the use of the strong form of the beam

model leads to the differentiation of discontinuous material parameters and inputs. It also

necessitates the use of high-order approximating elements. To alleviate these difficulties and

provide a framework amenable to analysis and approximation, we consider a corresponding

weak form of the model.

For this system, the state is taken to be !/= (w, a) in the Hilbert space H = L2(0, f) ×

L2(0, g) with tile inner product

jO( fo g(,I,,,I,)z = p_,,_',, d:,-+ p,-_,_',_ d.

where + = (0,, 02), ¢ = (¢',, _/'2). The space of test functions is V = HL(O,g) × H[(O, t),
HL(0, 0 - {_ ¢ t/'(0, e)t 0(0)= 0}, with the inner product

fo
f( it ,,J

(_5,_>v = (0'l + 02)(_"/l + f,2)da" + jo %¢2dx.

It should be noted that with these choices, V is continuously and densely embedded in H and

that V and H form a Gelfand triple; that is

V_--_H__H*_-_V *.

A weak form of the modeling equations is then

// // L j/p'5'f'l dx + "yti"('l d,r + QW'I dx + prii¢',2 dx +

fo g L _' -= Mm_g'_/'2 dx + ,f_'l dx

LgM ("2 dx + Q(/'2 dx

(4.10)

for all ql = (f'l,t/'2) C V. In this form, derivatives are transferred onto suitably' smooth

test functions. This alleviates the difficulties associated with the discontinuities and reduces

smoothness requirements on approximate solutions.

4.3 Model Well-Posedness

To provide a framework amenable to proving the well-posedness of the model and parameter

estimation problem, it is advantageous to formulate the model in terms of sesquilinear forms

and the operators which they generate. To this end, recall that y(t) = (w(t,.),o(t,.)) and
define

fo ( fO _ *ww Io-,(q)(y(t),_P) = Ela'(,',edx + s,at,tu + a)(ti"l + ¢',2)da,

// £
(4.11)

12



whereq = (p, r, El, G, CDI, CQ, _') is considered in an admissible parameter space Q. It can be

directly verified that o.l and o2 satisfy the boundedness and ellipticity conditions

(H1) Io'l(q)(_, qJ)l < c,l_lv[tplv, C1 E 11_

(H2) > 0

for all (I), qJ E V where tile constants q,- • •, c5 are independent of the l)ararneters q ¢ Q.

From (4.8), it follows that the transducer contributions can be represented in terms of the

operator B, : U --+ V* by

([B,,(,, ,>,,. =

/0- [P,(u,_)](/) 2A_g(g,. +h/2)_/,;\,.,,dd.r

where l.r = Ill, (-,.)v.,v is the usual duality product and P,, is defined in (4.9). Note that

fi'om Theorem 1, it follows that B,(u,{) C L2((O,T); V'). Finally, with the definition f(t) =

(p-lf(t,.),O), we can write the weak form (4.10) in the abstract variational form

(i)(l), *)v.,v + o'2(q)(;O(l), Oj) + o.,(q)(y(t), *) = ([B,,(u, _)](t) + .f(t), *)v*.v
(4.12)

y(0) = _0 , y(0) = Yl

for all * C i".

An equivalent system can be obtained by invoking the boundedness of o.1, o.2 to define

operators Ai(q) C/2(I; V*) ,i = 1,2, by

<AI*, qJ>v*,v = o.l(q)(_, kIJ)

, _, _I' C V.
<&¢, = *)

In operator form, the equations governing the beam dynamics then have the form

_l(t) + A2(q)_t(t) + Al(q)y(t) = [B,,(u, ()](t)+ f(t) (4.1:3)

ill _:*.

The subsequent result concerning the existence, uniqueness and regularity of solutions

follows directly" from Theorem 2.1 and Remark 2.1 of [4].

Theorem 2. Let Q denote a compact metric space and A4 denote the set; of finite, signed

Borel measures on S. Consider inputs u E C[0, T] and .f C B($, {-1, 1}). Finally, let o'_, o'2

I)e given by (4.11) and hence satisfy (ttl)-(H4). For each (q,u) E Q x .A/I, there then exists a

unique solution y to (4.12) which satisfies

y C C((0,7"); V) C L2((0, T); V)

C C((O,T); tI)N L2((O, T); V)

./) C L2((0, T); V*).
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Remark 2. As noted in Remark4.2 of [8], the regularity results in Theorem 2 can actually
bestrengthenedto yield

y C (7((0, T); l')

_ C C((0, T); H).

4.4 Parameter Estimation

The goal in the parameter estimation problem is to determine material parameters q =

(p, r, El, G, CDI, CQ, 7) and a measure u given data measurements _ from some observable

subspace Z of the state space. The form of the quadratic functional to be minimized depends

on the experimental data which is available. For time domain data consisting of position,

velocity or acceleration measurements at points x oi1 the beam, an appropriate functional is

0sy 2J(q, v) = _i -:_2(ti' "_';q' v) - zi
(4.14)

with s = 0, 1 or 2. Other functionals incorporating either time or frequency domain data can

be found in [8]. In each case, the minimization is performed subject to y satisfying (4.12) for

q E Q and u C ,,4 C .Ad where M is an appropriate class of measures.

As noted previously, the parameters p, r, El, G, col, CQ are assumed to be piecewise con-

stant with partition points at the connection rod edges. The air constant "7 is constant,, and

all seven parameters are positive. The admissible parameter space Q is then taken to be a

compact subset of the metri( space _ = [L_(0,/)]6 × IR with elelnents piecewise constant

between partition points and satisfying the positivity constraints.

An appropriate choice for .,4 is a set of probability measures with a metric which yields

convergence in distribution. Specifically, let Sa be a compact subset of S and let ;P(S,,)

denote the set of Borel probability measures u on Szx. The space .4 is then defined to be

T'($a) endowed with the Prohorov metric which is defined for ui, u2 E T'($a) by

p(u,,v.2) = inf{¢ > 0tV, l(F ) _< t/2(f e) +c, F closed, F C Sa}

(see [10] for details regarding this metric). Here F _ denotes an c neighborhood for i".

Remark 3. As detailed in [3, 6, 7, 10], the space .4 satisfies the following properties.

(a) Let C($a) denote the space of continuous functions on SA. Since T'(Sa) C [C($A)]*,

convergence in the Prohorov metric is equivalent to weak* convergence; that is

u_.-+ u _==> £ fduk-+ f_ fdu
,*, A

for .f C($a).

(b) .4 is a compact metric space.
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(c) Considerthe control influenceoperator/3,, defined in (3.2) and let y(q, u) be a solution to

(4.12). For the fnnctional J(q, defined in (4.14) with fixed q E O, the map u --+ J(q, r,)

is weak" lower semicontinuous fi'om 7'($,a) to IR.

The following theorem taken from [6] specifies conditions under which tile parameter esti-

mation prol)lenl with tile magnetostrictive material inputs is well-posed. When combined with

theory fl'om [5], it provides a framework for numerically estimating physical and hysteresis

shape parameters through a least squares fit to experimental data.

Theorem 3. Let /3', (lenote tile inagnetostrictive input operator defined in (3.2) and y(q, r')

be the solution to (4.12). If SA is a compact subset of $, then there is a probability measure

vo¢ 7'($_,) which solves the minimization problem

J(q,l/o) = inf J(q,v)
vET'(,¢_)

for the functional J(q, u) defined in (4.14).

5 Concluding Remarks

This paper addresses the characterization of material nonlinearities and hysteresis inherent to

magnetostrictive materials at middle to high range drive levels. The hysteresis is induced by

both magnetic tields and stresses within the material while additional nonlinearities arise in

the strain-magnetic induction relations and stress-strain relations. Some of the mechanisms

leading to these nonlinear input/output relations have been modeled in terms of electromag-

netic and magnetomechanical theories [20, 21, 22]. However, several mechanisms governing

magnetostrictive properties are still not completely characterized by physics-based models.

This motivates a mathematical characterization in terms of phenomenological Preisach tech-

niques.

Preisach models are empirical in the sense that they can be used to ma_thematically rep-

resent hysteresis curves in terms of shape parameters determined through least squares fits

to experimental data. Since the models are not directly derived from the physics of the sys-

tem. they can be used to model dynamics in which the underlying physics is not thoroughly

understood. The price paid for this generality is the loss of insight which can sometimes be

provided by a physic-based model.

In this work, Krasnoselskii-Pokrovskii kernels are used to characterize magnetostrictive

inputs to a flexible structure. As detailed in [6], such kernels are advantageous over classical

Preisach kernels due to the property that they are continuous with respect to both time

and shape parameters. The operators generated via these kernels are then used to fornmlate

the models in a Hilbert space framework. Well-posedness of the models is obtained through

the theory of [4] while existence of optimal physical parameters and an optimal measure for

characterizing the hysteresis curve follows fi'om the theory of [3, 5, 6]. Hence for structural

systems with magnet.ostrictiw' transducers, this characterization technique provides a Inodel

which is alnenable to analysis and approximation. In future investigations, the practical

efficacy of this model will be tested through validation experiments.
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